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Path Integrals and Lower Bounds for Density Matrices 
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Feynman has established a variational principle for the coordinate space 
representation of the canonical density matrix. It uses real trial actions in 
place of the actual real action. This principle is extended by dividing the 
original temperature interval, using matrix multiplication, and trial actions 
that depend on the end points. The result is a series of better lower bounds. 
A detailed analysis is made of the soluble harmonic oscillator case using 
free particle and mean path trial actions. 
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1. i N T R O D U C T I O N  

We consider the problem of obtaining lower bounds for the equilibrium 
density matrix. The point of view is that of  Wiener path integralsY .2~ They 
are particularly useful in this type of problem, yielding results that are difficult 
to obtain with conventional quantum mechanics. The approach is developed 
for the special case of  a one-dimensional particle moving in a time-independent 
potential. Actually these considerations are of much wider validity. They arose 
in studies ~3,4~ with multitime actions for polarons, electrons in random 
potentials, and polymer statistics. The application of  the present ideas to these 
more complicated cases will be described elsewhere. 

The starting point is the path integral representation of the density 
matrix 

p(xlx2lfl) = e x p [ - S ] ,  S = �89 2 z du + V(x(u)) du (1) 
,dx(0)  = x 2 

The basic tool in the analysis of  this Wiener integral is the Jensen 
(convexity) inequality as used by Feynman. Let So and S be real actions, and 
introduce the weight function 

f2=2 W0 = e x p [ -  So]/ro, ro(xlx218) = ~ x  e x p [ -  So] (2) 
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Then 

where 2 
p(xlx2[/3) >1 ro(xlx2[fl) exp[-(S - S0)wo] (3) 

where 
t" 

h0(xlx21/3 ) = j v( 'gQ(~l f l  Ixzx~) dr 

f; Q('qlfl] [xlx2) = dtpo(Xl~[fl- t)po(,lx2lt)/po(XlX2[fl) 

This can be made the start of  a cumulant analysis, which is a useful 
form of statistical mechanical perturbation theory. However, the lower 
bound property is lost. One can obtain more accurate bounds by matrix 
multiplication, since each factor refers to a shorter " t i m e "  interval. For 
example, 

p(xlx2[fl) = f p(xzy[/3/2) dy p(yx2lfl/2) (7) 

since the density matrix depends only on differences of  the/3 interval. 
Using the free action bound for each half interval, we find 

p(xlx2[/3) >1 f dy po(Xzy[fl/2)po(yx2[/3/2) 

x exp{-[Ao(x~y]/3/2) + Ao(yx2]/3/2)]} (8) 

We show explicitly that this is better than the free action bound. Let 

Wo(x~x2[ylfl) = po(x~yl/3/2)po(yx2IB/2)/po(XlX2lfl) (9) 

be a weight function for the y integration, with fixed values of  x~ and x2. 
Application of the convexity inequality then leads to the free action bound. 
The key step in the proof  is 

f dy Wo(x~x2[ yl/3)Ao(x~ylfl/2) 

_ 1 fB~2 po(x~ fl t)po@X2 fl+ po(XlX2]/3)~o dtfV(~)d~ - t) (10) 

21 am indebted to a referee for pointing out that Jensen's inequality has also been used 
to get upper bounds on the density matrix; cf. Refs. 6-8. An alternate approach to the 
problem of lower bounds is found in Ref. 9. 

( s  - So>wo = ~ x  Wo(S - So)/ro(xlx2[5) (4) 
2 

The simplest choice of  So is the free particle action, which leads to 

p(xlx2[/3) >1 po(XlX2]fl) exp[- Ao(xlx2[fl)] (5) 

po(XlX2[fl) = (2zr~)- 1/2 e x p [ -  (xl - x2)~/2fl] (6) 
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where one uses 

f dy po(yx2lfl/2)po(~ly[t) = po(Xz~1�89 + t) (11) 

The second term in the exponent gives the contribution of the other half of  
the/3 interval. 

For  weak potentials one can do the y integration by a cumulant analysis. 
This shows that the duplication of the free action contains some (but not all) 
of the higher order perturbation corrections. In compensation, the integrals 
are simpler than the perturbation formulas. The usefulness of the duplication 
trick has been pointed out by Miller ~5~ in connection with a classical path 
treatment of the diagonal elements of the density matrix. We are exploiting 
the lower bound feature for the off-diagonal elements and work with simple 
actions so that the subdivision is feasible. 

Using intervals of  magnitude fl/W with N -  1 integration variables 
Y,..., YN-1, we have (Y0 -= x l ,  Yu - x2) 

p(x~x2]/3) > f ~-fl po(Yj -Yy-I[/3/N)exp[- ~= Ao(y,-1, Yy[/3/N) 1 (12) 

In fact, if the simple free action bound is derived from ordinary quantum 
mechanics, one has an approach to the construction of  the path 
integral itself. The sequence Yl,...,YN-1 represents a discrete path. 
The potential is averaged over a small region for each yj. The case of  many 
intermediate steps is analyzed in some detail for the harmonic oscillator in 
Section 3. 

The price one pays for the improved bounds lies in the extra y~ integra- 
tions. To obtain practical but less accurate bounds one has the flexibility of  
introducing tractable weight functions W(yz ...yN_~[x~x2[/3) containing 
parameters. The convexity argument is used to find a bound and the param- 
eters are determined by variational considerations. One can then continue 
with a cumulant analysis of the multiple integral. I f  there is a classical path for 
the original path integral of interval/3, this should lead to a preferred set of 
yj with a fine enough subdivision. Thus far we have only used the free action 
So to generate an approximate p(x,x2[/3/N). This So does not depend directly 
on the end points xz, x2. Clearly, one can consider trial actions of a more 
general form that depend parametrically on,xl, x2. This leads to approxima- 
tions alien to Hamiltonian approaches. This idea can be combined with the 
subdivision technique. In the next section we examine a mean path action 
suggested by Feynman and Hibbs. One obtains a bound for each interval that 
is superior to the free action bound. In Section 3 it is used in a subdivision 
analysis for the harmonic oscillator. 
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2. M E A N  PATH A C T I O N  

We evaluate the density matrix p(xlx2[/3) using a trial action suggested 
by Feynman and Hibbs. We obtain a better bound for the partition function 
by bounding the density matrix. The trial action is 

fo So = �89 ~2 du +/3w(xl/31 IN,X2), Jz = x(u) du//3 (13) 

It is easy to find the optimal form for w(s ]xlx2). We emphasize that w 
depends on the end points x~, x2 (as well as on/3). This action is an example 
of a typical path integral type of approach. It organizes paths according to 
their mean position. Paths with the same mean position are assigned the same 
weight except for the different kinetic energy contributions. 

Using a weight Wo associated with So, we have 

/ f f ~  
Wo(xlx2[/3) = exp[- So(xlx2[/3)] ~ x  exp[-So] (14) 

2 

Write the denominator as 

f? -~xexp[-So] = d~a(~l/3l [xlx2)exp[-/3w(~]/3[ ]xlx2)] (15) 
2 

where 

f? [fo ] G(~:]/31 [xzx2) = ~xexp  - �89 2 2 du 3(~7- ~) 
2 

This path integral has the explicit form 

G(~[/3[ ]x~x2) = ~/]2 po(XlX2,/3)exp[-~ (~: 

We also need the path integral 

(16) 

T(~'IBI [ x l x 2 )  = ~ x  exp - �89 2 2 du 8(X - ~) V(x(u)) du 
2 

- - f  v(~)R(~[~I/3I lxlx~) (18) 

The function R is listed in the Appendix. 
A functional variation with respect to w(~]/3lxlx2) leads to the simple 

result 

pfxlx2l/3) /> f d~ G(~:[/31 ]xlx2) exp[-/3w(~[/3[ ]xzx2)] (19) 
d 

xl +x2)2] 2 
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Here 

w(~l/~l Ixlx=) = T(~I~I Ixlx~)/a(~l~l Ixlx~) (20) 

This yields a better bound than using the free action. To recover the latter 
result, use a weight 

p(~l/~l Ix~x=) = a(~[/~l lx~x=)/oo(Xlx~l~) (21) 

The convexity bound applied to the ~: integration then yields 

Since 

p(xlx2l~) ) po(X~X2[~) exp[- /~ f p(e)w(e) de] 

f p(~)w(~) d~ 
= f r(~[~[ Ixlx~) a~/po(x~x~l~) 

= fs189 fo~s~2au) oIf 

(22) 

Ko(xlx2[B) = f dfl G(fl) exp[-/3Wo(fl)] 

F t" 
P(xlx2[~) ~ J Ko(xlx2,~)Jd( Po exp[/3(Wo - w)] (25) 

and apply the convexity bound using Po(~:). This yields 

p(xlx2,fl) ) Ko(xlx2,fl)exp(/3 f (woG- T)exp(- /3wo)d@ (26) 

Thus, for this case, the procedure of taking an approximate weight 
function is equivalent to using a trial action wo(~[/31 ]xlx2) in place of the 
optimal w07[/31 [xlx2). 

Write 

where 

this is the free action result. One could improve this (at the cost of losing 
the bound property) by making a cumulant analysis for the ~: integration. The 
mean path action picks up some (but not all) of the V 2 corrections. 

To obtain results for strong potentials, one should do the ~ integration 
exactly. This may be difficult. To obtain approximate bounds, introduce a 
weight function 

po(~:l/3[ Ixlx2[ = exp[-/3w0(~:l/~[ [xlx2)] G(~:t/31 [xlx2)/Ko(xzxs[~) (24) 

V(x(u)) du/po(XlX2lfl) (23) 
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Let us consider the evaluation of  the partition function. The mean path 
bound is 

z(fl) >1 f dxl f G(#IN ]xlxz)] (27) 

I f  the potential has continuum states, the integration over xz leads to con- 
tributions that depend on the size of  the system. Consider the case (such 
as a harmonic oscillator) where there are only bound states. We exhibit the 
relation to the way Feynman and Hibbs use their mean path action. Their 
result is obtained by doing the xz integration first, using the convexity bound, 
with a weight function 

/o = f G(EIx2) dx2 = ( 2 ~ )  -1'~ (28) p(~]Xl) G(~lxl)/lo, 

This of course weakens the bound. We find 

Z > l0 d~: exp - l s  ~ DBy V(y(u) + ~ - y)du (29) 

which is the Feynman-Hibbs  result. 
The subdivision technique may of course be applied together with the 

mean path bound. From Eq. (19) one sees that there are ~j integrations along 
with the yj integrations of  matrix multiplication. 

3. APPLICATION TO THE H A R M O N I C  OSCILLATOR 

To obtain a clearer idea of what the improved bounds are like, consider 
the exactly soluble case of  a harmonic oscillator of  unit mass and angular 
frequency c%. We use units Where h = 1 and measure lengths in terms of the 

thermal de Broglie length 1 / ~ .  Then oJ - ~o0/~ and the " t i m e "  unit is 1. The 
exact density matrix for N units is 

p(xlx2N) = F~(o~)exp[-~N(xl 2 + x22) + B~xlx2] (30) 

where 

-PN = 2 sinh oJN] ' ~N = ~- coth o~N, /~N = co csch con (31) 

The partition function is 

ZN(oJ) = (2 sinh �89 -1 = e -~N/2 ~ e -jn~' (32) 
t=0 

The bar  indicates that we deal with the exact result. 
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It  is easy to show that  both  the free action and mean path action lead 
to density matrices o f  the above form with approximate  values o f  c~N, BN, 
FN(O)). We are interested in studying the effect o f  subdividing a given ~o by 
N - 1 intermediate steps. In t roduce  

B•162 = NBN(O)/N), c~N* = NaN(coiN) (33) 

For  the exact solution/7~r =/71(o) ) and ffzr = ffl(o))- For  the approximate  
density matrices we see how close BN*(O)) comes to Bl(o)). 

For  a density matrix o f  the above form one has the recurrence formulas 

(35) 
FN+I = FNFI~rlI2/(aN + c~) 1/9", ZN = r162 -- BN) 1/2 

To reduce this to a convenient form, introduce 

Azr = ~zr + al ,  ~N = 2AN/Bu (36) 

Then 

fiN+~ = B/~u,  AN+~ = A~r - I/r ~) (37) 

The ~u generate all o f  the desired quantities. They obey the two-term 
recurrence relation 

CN+~ = (fN 2 - 1)/~N_~, 

The first few values are 

f 2  = f l  2 - 1 ,  f 3  = f l ( f l  2 - 2 ) ,  

~o = 1, ~ = 2AUB~ (38) 

r = [~:~2(~:12 - 2) 2 - 1]/(r - 1) 
(39) 

The starting point  for  the free action bound  is 

~1 = �89 + o)2/3), B = 1 - o)2/6 (40) 

The exact /71 is positive and lies between one and zero. The free action 

bound  gives a negative B1 for  co > V'6. The AN* and BN* are ratios o f  poly- 
nomials in o) 2. For  small o) the exact expansion is 

/~-1 = (sinh o))/o) = {1 + o)2/6 + ~o)~/36 + ...}, ~ = 3/10 (41) 

The subdivisions with free action bounds  yield the sequence 

B * -1  = {1 + o)2/6 + 3N*o)'/36 + ...} (42) 

The coefficient o f  o)2 is exact in every approximation.  We find 

31" = 1, 32* = 7/16 = 0 . 4 4 ,  

approaching  3 = 0.30. 

33* = 29/81 = 0.36, 34* = 85/256 = 0.33 

(43) 
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The start ing point  o f  the mean  pa th  theory  is 

1 (  to2 ~4 1 ) ~2 co4 1 
cq = ~ 1 + 3 48 1 + ~o2/10 ' ' B1 = 1 - y + 481 + to2/10 (44) 

B1 remains positive until to ~ ~/2-0. We find the rapid convergence 

31" = 1/4 = 0.25, 32" = 19/64 = 0.298 (45) 

There are corresponding results for  the part i t ion function. 
We define 

Zu(to) = Z~(to/N) (46) 

which equals Zl(to) for  the exact solution. This is 

Zz~(to) = 1/[2 sinh(toN/2)] (47) 

Zl(to) ~ to-l{1 - J / 2 4  + to4(7/360.16) + ..-} (48) 

The  free particle act ion starts with 

/'1 = [ e x p ( -  to2/12)]/(27@/2 (49) 

Zl(to) = exp(- to2/12)/ to  ~ to-l{1 - to2/12 + o,4/2(12) 2 + ...} (50) 

The free particle action is wrong by a factor  o f  2 for  the coefficient o f  J .  
This can be t raced to the fact that  one needs 2al - B1 correct  to order  to4 
in order  to obtain Zl(to) to order  w 4. Bisection of  the free particle action yields 

Z2 = exp(-to2/24)/to(1 + to2/48)1/2 (51) 

--+ to-l{1 - �88 + 1.5 • 10-3w ~ + ...} (52) 

which exhibits the improvemen t  in the to2 coefficient. 
The  mean  pa th  act ion starts with 

Fl(w) = [exp(-to2/30)]/(Zzr)l/z(1 + to2/10)1/2 (53) 

Zl (w)  = exp(-to2/30)/to(1 + w2/60) ~/2 (54) 

--~ to-l{1 - to2/24 + oA(3/3200) + ...} (55) 

The  coefficient o f  to2 is correct.  The coefficient o f  to4 is 9.4 x 10-4. The exact 
coefficient is 12.1 x 10 -4. Bisecting the interval leads to 

Z2*(to) = exp(-to2/60)/to[(1 + to2/40)(1 + to2/48)(1 + tos/Z40)]x/2 (56) 

The  coefficient o f  to 4 is now 11.2 x 10 -4. 
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4. C O N C L U S I O N S  

We have shown that a series of lower bounds may be obtained by 
bounding the off-diagonal coordinate space elements of the density matrix 
and using matrix multiplication to divide the original interval. The accuracy 
of the bounds is of course contingent on the choice of the trial act!on, which in 
general depends parametrically on the end points. In particular the actions 
used here are not powerful enough to describe the discrete state structure (cf. 
the example of the harmonic oscillator). However, the technique can be 
extended to classical path approximations, as has been pointed out by 
Miller.( 6~ 

A P P E N D I X .  LIST OF PATH INTEGRALS 

The interval is 0 to f and 2 = f l-  1 fB ~ x(u)  du. We use the abbreviations 

(fo ) D x  = ~ x e x p  - �89  2 du , lo = (27r/3) -1/2, s = (t/f)(1 - t//3) 

We have 

F0(k [ f )  = 

a o ( k f / 3 )  = 

H o ( k l f )  = 

Io('q, tlff) = 

So(kla,  t l f )  = 

K0(~:lh, t[/3) = 

to(~:],7, t I f )  = 

: b x  exp(ikff) = lo exp ( -k2 /3 /24 )  (A1) 

o~ D x  3(~Y - ~) = ~ / -~  lo 2 exp(-6f2//3) (A2) 

f D x  exp[-ihx(t)]  = lo exp(-�89 (A3) 

f D x  3(x( t )  - ~) = lo2s - 1/2 exp(-~2/2s) (A4) 

o D x  exp[ik2 - i~x(t)] 

l0 exp[-(k2f/24) - (~2fs/2) + kh/3s/2] (A5) 

fo D x  3(2 - ~) e x p [ - i ~ ( t ) ]  

[? 6(, 
: D x  ~(x - ~) a (x ( t )  - ~) 

a/J2 loa[S(1 - 3s)] -1/e 

6~ 1 (7 +6~s )  2] 
x exp fl 213 s ( f  ".2- ) -~]  (A7) 



224 

and 

Eugene P. Gross 

~ 

Mo(kl~), tl/3 ) = Dx 3(x(t) - 7) exp(ik2) 

1 k 
--lo2s -1/2 exp[ -2~  + ~ fls(~ - ~ ] i ~  ~]] (18) 

F(kl/3l Ixxx~[) = 

G(~:I/3I Ix~x2) = 

H(~, tl/31 [x~x~) --- 

ff']~==~] Dx exp(ikX) 

exp[-kS~/24 + ik(x~ + x2)[21 po(X~X2[~) (A9) 

~ / ~  1opo(X~X~lt3) 

x exp{-(6//3)[~ - (x~ + x2)/2] 2} (A10) 

po(XlX2 I fl) exp{ - �89 
- i ~ [ x ~  + ( t / ~ ) ( x ~  - x~)l} (111)  

los-  ~%o(X~X~[~) 

x exp{-(1/2/3s)[r/- x2 - (t/[3)(xl - x2)] 2} (A12) 

Oo(XlX2Ifl) exp 24 2 + 

x exp{ik  X~ + X2 - iA[x2 + ~ ( x l -  x~)]} 

K(~IA, t[/31 [xxx~) = V ~  lopo(X~X~[[3) 

x exp 2 fl ~ - "  2 

t - x2)]} (A14) x e x p { - i ~ [ x 2 + ~ ( x ~  

L(~:]~, tlfll lxix2) = %/"r2 lo2Po(XlX2lfl)[s(1 - 3s)] -~2 

x exp{-(6/fl)[~: - -az(Xl + x2)] 2} 

x exp{-[~1 - x2 - (t/~)(xl - x2) 

+ 6s~ - 6s(xl + x2)/Z]212/3s(1 - 3s)] -~} 

= Lo(~ - ~(x~ + x~)l~ - x~ - ( t /~)(x~ - x~), t If3) 

• e x p [ -  (xl - xz)2/2fl] (A15) 

M(k]~7, t}/3J ]x lx2)  = Mo(kJ'q - x2 - ( t / ~ ) ( x l  - x 2 ) ,  t]~) (A16) 
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with 

and 

The average of the potential 

f l D x f f  V(x(t)) dt 

f ; f = V07 ) dv lo(7, tiff) dt = VOT)Qo(~lff) d~ 

Qo(r/Iff) = ~ ~-~ exp dr, ~--~ (~-~) 

Dx V(x(t)) dt = V(~) d~ Qo(~l - xllff) 

fs fo~ V(x(t)) dt 

C fo~f[  ' = V(V) d~ dt Dx 3(x(t) - r/) 
2 

fo' = V(,7) dw dtl(w, t[ffl [x,x=)Q(n[ffl Ix,x=) 

For the f-dependent part 

fo ~ s Dx 8(ff - ~:) V(x(t)) dt 

f Jo ~ = V(~) d~ dtLo(~[~7, tiff) 

f V(V) dw Ro(~lnlff) 

= f v(~) & Ro(~ - xll~ ~- xdff) 

~ D x  S(2 - D f f  V(x(t))dt 

= ~ v(~) & R(~[~/[ff] Ixix~) 
J 

(A17) 

(A18) 

(A19) 

(A20) 

(A21) 

(A22) 
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with 

R(~:lwl/3[ [x~x=) = fo a L(#Iw , t[/31 Ix~x2) dt 
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f j l  f f  x2(t) dt Dx 2 
2 

- (21r/3)112 exp 

ff  ff  x2(t) dt 1 ~2 Dx ~ = (2zr/3) 1'-----7 12 (A23) 

f] ~ x~(t) dt 
Dx 3(2 - ~) 2 

ffx 2(t) dt 
Dx 3(:2 - .  ~) 2 

~/-~ t3[ 1 3 (~ - x~) ~ 

2 + 6x_~lflx_______~2 + ~ ( x l -  x2) 2] (A24) 

= 27r ~30 + 5  e x p - 7  

1~___~ 2 xl(f T xl) ] -6(~: - xl) ~ + ~ + exp /3 

(A26) 
~x'~ f~ x~(t) dt Dx (3(~ - E) 2 

2 

x . +  = ~ 2 x2) 

+ x .  2---'7-+x~( ~ x. +x2)2 + _~___fl +x lx2  1 (xl - x2) 2] 
6 /3 J 

x exp[ -~  (~: xl 2 x2)]exp[ (xl ~x2)21 (A27) 
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